GQDs Incorporated CoPc Nanorods for Electrochemical Detection of Dopamine and Uric Acid

نویسندگان

چکیده

Dopamine (DA) and uric acid (UA) are biomolecules of great consideration that coexist in human body. It is essential challenging to detect them simultaneously with high sensitivity. This paper reports a novel electrochemical biosensor based on the nanocomposites cobalt phthalocyanine (CoPc) anchored graphene quantum dots (GQDs) for DA UA detection. The GQDs incorporation CoPc nanorods partial end stretching significantly enhances electrocatalytic activity promotes electron transfer rate. Low detection limits 21 nm 145 have been successfully achieved fabricated CoPc/GQDs biosensor. density-functional theory proves enhanced conductivity biomolecule's interaction electrode surface. Furthermore, proposed sensor shows remarkable reproducibility, repeatability, stability. applied simultaneous detections urine samples. excellent performance suggests could be promising potential candidate sensors selectively.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication of Graphene–LaMnO3 Sensor for Simultaneous Electrochemical Determination of Dopamine and Uric Acid

Dopamine  (DA)  and  uric  acid  (UA)  are  two  of  important bimolecular widely  circulated  in  body blood. Therefore, development of simple and rapid methods for simultaneous determination of them in  routine  analysis  has  a  great  significance  for  many  researchers. Therefore,  for  the  first  time, nanocomposite  of  graphene  (Gr)LaMnO3has  been  utilized  to  fabricate  the  new  ...

متن کامل

Manganese Ferrite Nanocomposite Modified Electrochemical Sensor for the Detection of Guanine and Uric Acid

Manganese ferrite nanoparticles were produced by applying the combustion technique using the manganese acetate and ferric nitrate as the starting material. Analytical techniques like FESEM and TEM were utilized to characterize the synthesized materials. The typical size was observed in the range of 12 to 14 nm with a cubic structure. The synthesized material was used as an electrochemical senso...

متن کامل

Solution Process Synthesis of High Aspect Ratio ZnO Nanorods on Electrode Surface for Sensitive Electrochemical Detection of Uric Acid

This study demonstrates a highly stable, selective and sensitive uric acid (UA) biosensor based on high aspect ratio zinc oxide nanorods (ZNRs) vertical grown on electrode surface via a simple one-step low temperature solution route. Uricase enzyme was immobilized on the ZNRs followed by Nafion covering to fabricate UA sensing electrodes (Nafion/Uricase-ZNRs/Ag). The fabricated electrodes showe...

متن کامل

Au nanorods/ g-C3N4 composite based biosensor for electrochemical detection of chronic lymphocytic leukemia

Objective: With the increasing incidence of cancer and the dramatic effect of early detection on treatment and increase patient's life, many efforts have been devoted to making sensitive diagnosis systems. DNA as a biomarker for diagnosis of different types of cancers at the early stages of illness has attracted much attention.Methods: In this research novel electrochemical biosensor was ...

متن کامل

Morphology-dependent Electrochemical Enhancements of Porous Carbon as Sensitive Determination Platform for Ascorbic Acid, Dopamine and Uric Acid

Using starch as the carbon precursor and different-sized ZnO naoparticles as the hard template, a series of porous carbon materials for electrochemical sensing were prepared. Experiments of scanning electron microscopy, transmission electron microscopy and Nitrogen adsorption-desorption isotherms reveal that the particle size of ZnO has big impacts on the porous morphology and surface area of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advanced Materials Interfaces

سال: 2022

ISSN: ['2196-7350']

DOI: https://doi.org/10.1002/admi.202200738